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a) State what it means for a real sequence to converge.

1. (

(b) State the Least Upper Bound principle (continuum property)

(c) Prove that every increasing sequence that is bounded above converges.
(

d) State the Bolzano-Weierstrass Thecrem.

2. (a) State the definition of lim, ¢ f(z) = L.

(b) Let f be continuous on the compact interval la,b]. Prove that f is bounded on
[a, b].

- (c) Suppose that f(y) — | as y — 7 and that 9(z) — 7n, as £ — £. Also assume that
/ is continuous at 7, i.e. I = f(n). Show that

fg(z)) =1 asz—¢

3. (a) Define what it means for a sequence to be Cauchy.

(b) State the General principle of convergence.

(+3)
Tn=|14 -

n
Is increasing, while the sequence

1 n+1
Yn = (]+_>
n

is decreasing. Show that z, < Yn. Deduce that z, is bounded above, while vy, is
bounded below. Conclude that they have the same limit.

(c) Prove that the sequence
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4. (a) Suppose that the series $°% | a, converges. Show that lima, = 0.

(b) Prove that the series
[e9]
>
ns
n=]
converges for s > 1.

(c) Determine with explanations whether the following series converge or diverge.

2

i 3n §4n< n )"
ﬂ=]2n3—n’ - n+ 1 '

5. (a) Let f : R — R be defined by

Prove carefully (using € and 6) that f(z) is continuous at z = 1.
(b) State and prove the Intermediate Value Theorem.

(c) Let f :]0,1] — [0,1] be continuous on [0, 1).

Prove that for some £ € [0, 1] we have f(£) = &.

6. Consider the sequence defined by

1

II=17 xn+l:]+xa
n

R T —

Let | = (v/5 — 1)/2, the positive root of the equation 2+ z-1=0.
(a) Show inductively that z5, < l and zon-1 > L.

(b) Show inductively that the subsequence (z9,) is increasing, while the subsequence
(Ton-1) is decreasing.
(

¢) Explain why limz, = L.
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